High perioperative risk patients: two approaches to stratification. Review
PDF_2019-4_34-46 (Русский)
HTML_2019-4_34-46 (Русский)


perioperative risk stratification

How to Cite

Zabolotskikh IB, Trembach NV High perioperative risk patients: two approaches to stratification. Review. Annals of Critical Care. 2019;(4):34–46. doi:10.21320/1818-474X-2019-4-34-46.


Abstract Views: 22
PDF_2019-4_34-46 (Русский) Downloads: 4
HTML_2019-4_34-46 (Русский) Downloads: 3
Plum Analytics


English Русский

Social Networks




Despite the successes of modern medicine, surgical interventions have not become absolutely safe, so far the prevalence of postoperative complications and mortality remain high, and postoperative mortality came in third place among the causes of death after coronary heart disease and stroke. The problem of perioperative risk assessment constantly attracts the attention of specialists, since the identification of high-risk patients is the basis for the prevention of an adverse outcome. Nevertheless, despite its importance, the problem is far from being solved. This review focuses on two approaches to risk stratification: mortality risk assessment and complications risk assessment. The analysis of the literature shows how contradictory both these approaches are: the absence of generally accepted definitions of mortality and complications, the diversity of criteria for the allocation of high risk — all these leads to the absence of a single idea of high perioperative risk. Current risk assessment systems have significant limitations and low predictive value. Nevertheless, there has been progress in the standardization of risk stratification studies over the past decade: common definitions are emerging, national registers are being created — all this gives hope for improving the quality of the risk assessment.
PDF_2019-4_34-46 (Русский)
HTML_2019-4_34-46 (Русский)


  1. Fleisher L.A., Fleischmann K.E., Auerbach A.D., et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 64: 77–137. DOI: 10.1161/CIR.0000000000000106
  2. James S., Jhanji S., Smith A., et al. Comparison of the prognostic accuracy of scoring systems, cardiopulmonary exercise testing, and plasma biomarkers: a single-centre observational pilot study. Br J Anaesth 2014; 112: 491–497. DOI: 10.1093/bja/aet346
  3. Lindenauer P.K., Pekow P., Wang K., et al. Perioperative beta-blocker therapy and mortality after major noncardiac surgery. N Engl J Med. 2005; 353: 349–361. DOI: 10.1056/NEJMoa041895
  4. London M.J., Hur K., Schwartz G.G., Henderson W.G. Association of perioperative beta-blockade with mortality and cardiovascular morbidity following major noncardiac surgery. JAMA 2013; 309: 1704–1713. DOI: 10.1001/jama.2013.4135
  5. Ghaferi A.A., Birkmeyer J.D., Dimick J.B. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009; 361: 1368–1375. DOI: 10.1056/NEJMsa0903048
  6. Birkmeyer J.D., Siewers A.E., Finlayson E.V., et al. Hospital volume and surgical mortality in the United States. N Engl J Med. 2002; 346: 1128–1137. DOI: 10.1056/NEJMsa012337
  7. Glance L.G., Kellermann A.L., Hannan E.L., et al. The impact of anesthesiologists on coronary artery bypass graft surgery outcomes. Anesth Analg. 2015; 120: 526–533. DOI: 10.1213/ANE.0000000000000522
  8. International Surgical Outcomes Study group. Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries. Br J Anaesth. 2016; 117(5): 601–609. DOI: 10.1093/bja/aew316
  9. Weiser T.G., Haynes A.B., Molina G., Lipsitz S.R. Size and distribution of the global volume of surgery in 2012. Bull World Health Organ. 2016; 94(3): 201–209. DOI: 10.2471/BLT.15.159293
  10. Nepogodiev D., Martin J., Biccard B., et al. National Institute for Health Research Global Health Research Unit on Global Surgery. Global burden of postoperative death. Lancet. 2019; 393: 401. DOI: 10.1016/S0140–6736(18)33139–8
  11. Clifton B.S., Hotten W.I. Deaths associated with anaesthesia. Br J Anaesth. 1963; 35: 250–259. DOI: 10.1093/bja/35.4.250
  12. Harrison G.G. Death attributable to anaesthesia. A 10-year survey (1967–1976). Br J Anaesth. 1978; 50(10): 1041–1046.
  13. Marx G.F., Mateo C.V., Orkin L.R. Computer analysis of postanesthetic deaths. Anesthesiology. 1973; 39(1): 54–58.
  14. Lunn J.N., Mushin W.W. Mortality associated with anesthesia. Anaesthesia. 1982; 37(8): 856.
  15. Copeland G.P., Jones D., Walters M. The POSSUM system of surgical audit. Br J Surg. 1991; 78(3): 355–360. DOI: 10.1002/bjs.1800780327
  16. St-Louis E., Iqbal S., Feldman L.S., et al. Using the age-adjusted Charlson comorbidity index to predict outcomes in emergency general surgery J Trauma Acute Care Surg. 2015; 78(2): 318–323. DOI: 10.1097/TA.0000000000000457
  17. Schulz G.B., Grimm T., Buchner A., et al. Surgical High-risk Patients With ASA ≥ 3 Undergoing Radical Cystectomy: Morbidity, Mortality, and Predictors for Major Complications in a High-volume Tertiary Center. Clin Genitourin Cancer. 2018; 16(6): e1141–e1149. DOI: 10.1016/j.clgc.2018.07.022
  18. Monk T.G., Saini V., Weldon B.C., Sigl J.C. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005; 100: 4–10. DOI: 10.1213/01.ANE.0000147519.82841.5E
  19. Koo C.Y., Hyder J.A., Wanderer J.P., et al. A meta-analysis of the predictive accuracy of postoperative mortality using the American Society of Anesthesiologistsʼ physical status classification system. World J Surg. 2015; 39(1): 88–103. DOI: 10.1007/s00268-014-2783-9
  20. Wolters U., Wolf T., Stützer H., Schröder T. ASA classification and perioperative variables as predictors of postoperative outcome. Br J Anaesth. 1996; 77(2): 217–222. DOI: 10.1093/bja/77.2.217
  21. Irita K., Kawashima Y., Tsuzaki K. Perioperative mortality and morbidity in the year 2000 in 502 Japanese certified anesthesia-training hospitals: with a special reference to ASA-physical status — report of the Japan Society of Anesthesiologists Committee on Operating Room Safety. Masui. 2002; 51(1): 71–85.
  22. Hackett N.J., De Oliveira G.S., Jain U.K., Kim J.Y. ASA class is a reliable independent predictor of medical complications and mortality following surgery. Int J Surg. 2015; 18: 184–190. DOI: 10.1016/j.ijsu.2015.04.079
  23. Visnjevac O., Davari-Farid S., Lee J. The Effect of Adding Functional Classification to ASA Status for Predicting 30-Day Mortality. Anesth Analg. 2015; 121: 110–116. DOI: 10.1213/ANE.0000000000000740
  24. Sutton R., Bann S., Brooks M., Sarin S. The Surgical Risk Scale as an improved tool for risk-adjusted analysis in comparative surgical audit. Br J Surg. 2002; 89:763–768. DOI: 10.1046/j.1365-2168.2002.02080.x
  25. Donati A., Ruzzi M., Adrario E., et al. A new and feasible model for predicting operative risk. Br J Anaesth. 2004; 93: 393–399. DOI: 10.1093/bja/aeh210
  26. Davenport D.L., Bowe E.A., Henderson W.G., et al. National Surgical Quality improvement Program (NSQiP) risk factors can be used to validate American Society of Anesthesiologists Physical Status Classification (ASA PS) levels. Ann Surg. 2006; 243: 636–641. DOI: 10.1097/01.sla.0000216508.95556.cc
  27. Shoemaker W.C., Appel P.L., Kram H.B., et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988, 94: 1176–1186. DOI: 10.1378/chest.94.6.1176
  28. Wilson J., Woods I., Fawcett J., et al. Reducing the risk of major elective surgery; randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999; 318: 1099–1103. DOI: 10.1136/bmj.318.7191.1099
  29. Lobo S.M., Salgado P.F., Castillo V.G., et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000; 28: 3396–3404. DOI: 10.1097/00003246-200010000-00003
  30. Charlson M.E., Pompei P., Ales K.L., MacKenzie C.R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373–383. DOI: 10.1016/0021–9681(87)90171–8
  31. Charlson M., Szatrowski T.P., Peterson J., Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994; 47:1245–1251. DOI: 10.1016/0895–4356(94)90129-5
  32. Sundararajan V., Henderson T., Perry C., et al. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004; 57(12): 1288–1294. DOI: 10.1016/j.jclinepi.2004.03.012
  33. Atherly A., Fink A.S., Campbell D.C., et al. Evaluating alternative risk-adjustment strategies for surgery. Am J Surg. 2004; 188(5): 566–570. DOI: 10.1016/j.amjsurg.2004.07.032
  34. Jhanji S., Thomas B., Ely A., et al. Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia. 2008; 63(7): 695–700. DOI: 10.1111/j.1365-2044.2008.05560.x
  35. Pearse R.M., Harrison D.A., James P., et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006; 10(3): 81. DOI: 10.1186/cc4928
  36. Brooks M.J., Sutton R., Sarin S. Comparison of Surgical Risk Score, POSSUM and p-POSSUM in higher-risk surgical patients. Br J Surg. 2005; 92:1288–92. DOI: 10.1002/bjs.5058
  37. Neary W.D., Prytherch D., Foy C., et al. Comparison of different methods of risk stratification in urgent and emergency surgery. Br J Surg. 2007; 94:1300–5. DOI: 10.1002/bjs.5809
  38. Le Manach Y, Collins G, Rodseth R, et al. Preoperative score to predict postoperative mortality (POSPOM). Derivation and Validation. Anesthesiology. 2016; 124:570–9. DOI: 10.1097/ALN.0000000000000972
  39. Froehner M. Validation of the Preoperative Score to Predict Postoperative Mortality in Patients Undergoing Radical Cystectomy. Eur Urol Focus. 2019; 5(2): 197–200. DOI: 10.1016/j.euf.2017.05.003
  40. Kim M., Wall M., Li G. Risk Stratification for Major Postoperative Complications in Patients Undergoing Intra-abdominal General Surgery Using Latent Class Analysis. Anesth Analg. 2018; 126(3): 848–857. DOI: 10.1213/ANE.0000000000002345
  41. Bilimoria K.Y., Liu Y., Paruch J.L., et al. Development and evaluation of the Universal ACS NSQIP Surgical Risk Calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg. 2013; 217: 833–842. DOI: 10.1016/j.jamcollsurg.2013.07.385
  42. Gawande A.A., Thomas E.J., Zinner M.J., Brennan T.A. The incidence and nature of surgical adverse events in Colorado and Utah in 1992. Surgery. 1999; 126: 66–75. DOI: 10.1067/msy.1999.98664
  43. Kable A.K., Gibberd R.W., Spigelman A.D. Adverse events in surgical patients in Australia. Int J Qual Heal Care J Int Soc Qual Heal Care ISQua 2002; 14: 269–276. DOI: 10.1093/intqhc/14.4.269
  44. Malik O.S., Brovman E.Y., Urman R.D. The Use of Regional or Local Anesthesia for Carotid Endarterectomies May Reduce Blood Loss and Pulmonary Complications. J Cardiothorac Vasc Anesth. 2019; 33(4): 935–942. DOI: 10.1053/j.jvca.2018.08.195
  45. Kahl A., du Bois A., Harter P., et al. Prognostic Value of the Age-Adjusted Charlson Comorbidity Index (ACCI) on Short- and Long-Term Outcome in Patients with Advanced Primary Epithelial Ovarian Cancer. Ann Surg Oncol. 2017; 24(12): 3692–3699. DOI: 10.1245/s10434-017-6079-9
  46. Clavien P.A., Sanabria J.R., Strasberg S.M. Proposed classification of complications of surgery with examples of utility in cholecystectomy. Surgery. 1992; 111: 518–526.
  47. Dindo D., Demartines N., Clavien P.A. Classification of surgical complications-a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004; 240: 205–213. DOI: 10.1097/01.sla.0000133083.54934.ae
  48. Strasberg S.M., Linehan D.C., Hawkins W.G. The accordion severity grading system of surgical complications. Ann Surg. 2009 Aug; 250(2): 177–186. DOI: 10.1097/SLA.0b013e3181afde41
  49. Тимербулатов М., Тимербулатов Ш.В., Тимербулатов М.В. Классификация хирургических осложнений (с комментарием редколлегии). Хирургия. Журнал им. Н.И. Пирогова. 2018; 9: 62–67. DOI: 10.17116/hirurgia2018090162. [Timerbulatov M., Timerbulatov sh. V., Timerbulatov M.V. Classification of surgical complications (with comment of the editorial Board). Surgery. Journal. N.I. Pirogov. 2018; 9: 62–67. (In Russ)]
  50. Jammer I., Wickboldt N., Sander M., et al. European Society of Anaesthesiology (ESA) and the European Society of Intensive Care Medicine (ESICM). Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur. J. Anaesthesiol. 2015; 32(2): 88–105. DOI: 10.1097/EJA.0000000000000118
  51. Biccard B.M., African Surgical Outcomes Study (ASOS) investigators. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet. 2018 Apr 21; 391(10 130): 1589–1598. DOI: 10.1016/S0140–6736(18)30001-1
  52. Hightower C.E., Riedel B.J., Feig B.W., et al. A pilot study evaluating predictors of postoperative outcomes after major abdominal surgery: Physiological capacity compared with the ASA physical status classification system. Br J Anaesth. 2010; 104:465–471. DOI: 10.1093/bja/aeq034
  53. Makary M.A., Segev D.L., Pronovost P.J., et al. Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg. 2010; 210: 901–908. DOI: 10.1016/j.jamcollsurg.2010.01.028
  54. Goffi L., Saba V., Ghiselli R, et al. Preoperative APACHE ii and ASA scores in patients having major general surgical operations: Prognostic value and potential clinical applications. Eur J Surg. 1999; 165:730–735. DOI: 10.1080/11024159950189483
  55. Suidan R.S., Leitao M.M.Jr., Zivanovic O., et al. Predictive value of the Age-Adjusted Charlson Comorbidity Index on perioperative complications and survival in patients undergoing primary debulking surgery for advanced epithelial ovarian cancer. Gynecol Oncol. 2015; 138: 246–251. DOI: 10.1016/j.ygyno.2015.05.034
  56. Jones D.R., Copeland G.P., de Cossart L. Comparison of POSSUM with APACHE II for prediction of outcome from a surgical high-dependency unit. Br J Surg. 1992; 79:1293–1296. DOI: 10.1002/bjs.1800791216
  57. Teixeira I.M., Teles A.R., Castro J.M. Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM) System for Outcome Prediction in Elderly Patients Undergoing Major Vascular Surgery.J Cardiothorac Vasc Anesth. 2018; 32(2): 960–967. DOI: 10.1053/j.jvca.2017.08.036
  58. Bohm N., Wales L., Dunckley M., et al. Objective risk-scoring systems fornrepair of abdominal aortic aneurysms: Applicability in endovascular repair? Eur J Vasc Endovasc Surg 2008; 36: 172–177. DOI: 10.1016/j.ejvs.2008.03.007
  59. Masago T., Morizane S., Honda M. Estimation of mortality and morbidity risk of radical cystectomy using POSSUM and the Portsmouth predictor equation. Cent European J Urol. 2015; 68(3): 270–276. DOI: 10.5173/ceju.2015.636
  60. Makino Y., Ishida K., Kishi K., et al. The association between surgical complications and the POSSUM score in head and neck reconstruction: a retrospective single-center study. Plast Surg Hand Surg. 2018; 52(3): 153–157. DOI: 10.1080/2000656X.2017.1372288
  61. Ansorge C., Lindström P., Strömmer L., et al. Assessing surgical quality: comparison of general and procedure-specific morbidity estimation models for the risk adjustment of pancreaticoduodenectomy outcomes. World J Surg. 2014; 38(9): 2412–2421. DOI: 10.1007/s00268-014-2554-7
  62. Nashef S.A., Roques F., Michel P., et al. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg. 1999; 16: 9–13. DOI: 10.1016/s1010-7940(99)00134-7
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Download data is not yet available.