Inhalation therapy with nitric oxide synthesized from atmospheric air in the postoperative period of cardiac surgery in children: single-center retrospective cohort study
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-3
PDF_2021-3_98-107 (Russian)
HTML_2021-3_98-107 (Russian)
PDF_2021-3_98-107
HTML_2021-3_98-107

Keywords

nitric oxide
cardiac surgery
postoperative period
pulmonary hypertension
pulmonary artery pressure
children

How to Cite

1.
Bautin A.E., Selemir V.D., Nurgalieva A.I., Morozov K.A., Nikiforov V.G., Biktasheva L.Z., Afanasyeva K.Y., Marichev A.O., Tashkhanov D.M., Karpova L.I., Ivanov I.Y., Akhimov P.S., Buranov S.N., Karelin V.I., Shirshin A.S., Valueva Y.V., Domnin S.E., Pichugin V.V. Inhalation therapy with nitric oxide synthesized from atmospheric air in the postoperative period of cardiac surgery in children: single-center retrospective cohort study. Annals of Critical Care. 2021;(3):98-107. doi:10.21320/1818-474X-2021-3-98-107

Statistic

Abstract Views: 98
PDF_2021-3_98-107 (Russian) Downloads: 41
HTML_2021-3_98-107 (Russian) Downloads: 92
PDF_2021-3_98-107 Downloads: 16
HTML_2021-3_98-107 Downloads: 14
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Objectives. To study the clinical efficacy and safety of using the method of synthesis of nitric oxide (NO) from atmospheric air in the postoperative period of cardiac surgery in children with precapillary pulmonary hypertension (PH). Materials and methods. A clinical study with retrospective control included 90 patients (28 newborns and 62 children older than 28 days), including 40 boys and 50 girls, median age 0.25 (0.28; 1.17) years. The following inclusion criteria were determined: signed informed consent of the patientʼs legal representative, underwent heart surgery, mechanical controlled ventilation (MCV), pulmonary artery systolic pressure (PAPsys) ≥ 35 mm Hg. Exclusion criteria: methemoglobinemia, left ventricular failure III — IV, hemorrhagic diathesis. 45 children were included in the study group (inhalation of NO obtained by synthesis from atmospheric air using the AIT-NO-01 device), 45 children were included in the retrospective control group (application of the NO delivery method from cylinders, NOXBOX Mobile device (Bedfont, UK)). There were no differences in anthropometric parameters and severity of baseline precapillary PH between the groups. Results. After one hour of NO inhalation using the AIT-NO-01, a decrease in PAPsys was noted. by 33.3 % (p < 0.001). In the retrospective control group, after one hour of NO inhalation, there was a decrease in PAPsys by 26.7 % (p < 0.001). PAPsys decreased by 10 % or more in 40 (89 %) of patients in the study group and in 38 (84 %) of patients in the retrospective control group, (p = 0.4). Inhalation of NO obtained by the synthesis method from atmospheric air was associated with a shorter duration of MCV compared with the method of supply from cylinders: 12 (2; 28) h versus 14 (12.2; 70.5) h, p = 0.01. The length of ICU stay and postoperative complications rate did not differ in the study groups. There were no differences in the risk and severity of the side effects of NO inhalation therapy (the synthesis of methemoglobin and NO2) between the two methods studied. Conclusion. NO inhalation therapy after cardiac surgery in children using the AIT-NO-01 device has the same effectiveness and safety compared with the method of NO supply from cylinders.

PDF_2021-3_98-107 (Russian)
HTML_2021-3_98-107 (Russian)
PDF_2021-3_98-107
HTML_2021-3_98-107

References

  1. Bhatti F., Grayson A.D., Grotte G., et al. The logistic EuroSCORE in cardiac surgery: how well does it predict operative risk? Heart. 2006; 92: 1817–20. DOI: 10.1136/hrt.2005.083204
  2. Borde D.P., Asegaonkar B., Khade S., et al. Impact of preoperative pulmonary arterial hypertension on early and late outcomes in patients undergoing valve surgery for rheumatic heart disease. Indian J Anaesth. 2018; 62 (12): 963–71. DOI: 10.4103/ija.IJA_374_18
  3. Bando K., Turrentine M.W., Sharp T.G., et al. Pulmonary hypertension after operations for congenital heart disease: analysis of risk factors and management. J Thorac Cardiovasc Surg. 1996; 112: 1600–9. DOI: 10.1016/s0022-5223(96)70019-3
  4. Galiè N., Humbert M., Vachiery J.–L., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J. 2016; 37(1): 67–119. DOI: 10.1093/eurheartj/ehv317
  5. Beghetti M., Berger R.M., Schulze-Neick I., et al. Diagnostic evaluation of paediatric pulmonary hypertension in current clinical practice. Eur Respir J. 2013; 42 (3): 689–700. DOI: 10.1183/09031936.001401
  6. Marín M.J. del C., Rotés A.S., Ogando A.R., et al. Assessing pulmonary hypertensive vascular disease in childhood. Data from the Spanish registry. Am J Respir Crit Care Med. 2014; 190(12): 1421–9. DOI: 10.1164/rccm.201406-1052oc
  7. Adatia I., Beghetti M. Early postoperative care of patients with pulmonary hypertension associated with congenital cardiac disease. Cardiology in the Young. 2009; 19(4): 315–9. DOI: 10.1017/S1047951109990175
  8. Fattouch K., Sbraga F., Bianco G., et al. Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Card Surg. 2005; 20(2): 171–6. DOI: 10.1111/j.0886-0440.2005.200383w.x
  9. Winterhalter М., Rex S., Stoppe C., et al. Effect of iloprost inhalation on postoperative outcome in high risk cardiac surgical patients: a prospective randomizedcontrolled multicentre trial (ILOCARD). Can J Anaesth. 2019; 66(8): 907–20. DOI: 10.1007/s12630-019-01309-8
  10. ПичугинВ.В., Домнин С.Е., Калинина М.Л. и др. Интраоперационная NO-терапия у пациентов с высокой легочной гипертензией при коррекции клапанных пороков сердца. Медицинский альманах. 2017; 3(48): 144–9. [Pichugin V.V., Domnin S.E., Kalinina M.L., et al. Intraoperative NO-therapy in patients with high pulmonary hypertension for the correction of valvular heart disease. Medical almanac. 2017; 3(48): 144–9. (In Russ)]
  11. Buzzarro M., Gross I. Inhaled nitric oxide for the postoperative management of pulmonary hypertension in infants and children with congenital heart disease. Anesth Analg. 2006; 102(3): 964. DOI: 10.1213/01.ane.0000198589.85524.60
  12. Баутин А.Е., Осовских В.В. Острая правожелудочковая недостаточность. Вестник анестезиологии иреаниматологии. 2018; 15(5): 74–86. DOI: 21292/2078-5658-2018-15-5-74-86. [Bautin A.E., Osovskikh V.V. Acute right ventricular failure. Messenger of Anesthesiology and Resuscitation. 2018; 15(5): 74–86. DOI: 10.21292/2078-5658-2018-15-5-74-86. (In Russ)]
  13. Villarreal E.G., Aiello S., Evey L.W., et al. Effects of inhaled nitric oxide on haemodynamics and gas exchange in children after having undergone cardiac surgery utilising cardiopulmonary bypass. Cardiology in the Young. 2020; 30(8): 1151–6. DOI: 10.1017/S1047951120001717
  14. Sardo S., Osawa E.A., Finco G., et al. Nitric Oxide in Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. Journal of Cardiothoracic and Vascular Anesthesia. 2018; 32(6): 2512–9. DOI: 10.1053/j.jvca.2018.02.003
  15. Gorenflo M., Gu H., Xu Z. Peri-operative pulmonary hypertension in paediatric patients: current strategies in children with congenital heart disease. Cardiology. 2010; 116(1): 10–7. DOI: 10.1159/000313864
  16. Germann P., Braschi A., Della Rocca G., et al. Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive Care Med. 2005; 31(8): 1029–41. DOI: 10.1007/s00134-005-2675-4
  17. Griffiths M., Evans T. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005; 353(25): 2683–95. DOI: 10.1056/NEJMra051884
  18. Pepke-Zaba J., Higenbottam T.W., Dinh-Xuan A.T., et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991; 338(8776): 1173–4. DOI: 10.1016/0140-6736(91)92033-x
  19. Козлов И.А., Попцов В.Н. Клиническое использование ингаляционной окиси азота. Анестезиология и реаниматология. 1997; 5: 80–85. [Kozlov I.A., Poptsov V.N. Clinical use of inhaled nitric oxide. Anesteziologiya i reanimatologiya. 1997; 5: 80–85. (In Russ)]
  20. Буранов С.Н., Карелин В.И., Селемир В.Д. и др. Аппарат для ингаляционной NO-терапии. Приборы и техника эксперимента. 2019; 5: 158–9. DOI: 10.1134/s0032816219040037 [Buranov S.N., Karelin V.I., Selemir V.D., et al. Inhalation NO-therapy machine. Pribory i tekhnika ehksperimenta. 2019; 5: 158–9. DOI: 10.1134/s0032816219040037 (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 ANNALS OF CRITICAL CARE