Critical appraisal of the “cytokine storm” concept in new coronavirus disease COVID-19. Review
#2021-1
PDF_2021-1_57-68 (Русский)
HTML_2021-1_57-68 (Русский)

Keywords

COVID-19
SARS-CoV-2
cytokines
cytokine storm
hyper-inflammation
immunomodulation

How to Cite

Bobkova S.S., Zhukov A.A., Protsenko D.N., Samoylenko V.V., Tyurin I.N. Critical appraisal of the “cytokine storm” concept in new coronavirus disease COVID-19. Review. Annals of Critical Care. 2021;(1):57–68. doi:10.21320/1818-474X-2021-1-57-68.

Statistic

Abstract Views: 343
PDF_2021-1_57-68 (Русский) Downloads: 24
HTML_2021-1_57-68 (Русский) Downloads: 19
Statistic from 21.01.2023

Abstract

Introduction. Novel coronavirus infection (COVID-19) is characterized by systemic hyper-inflammation with elevated inflammatory cytokines referred to cytokine storm. It has been recognized as a leading cause of severe COVID-19 and its progression to multi-organ failure.

Objectives. To make a synthesis if the literature sources and to critical appraise “cytokine storm” concept in COVID-19.

Results. While comparisons have been made between COVID-19 cytokine storm and other kinds of cytokine storm such as hemophagocytic lymphohistiocytosis and cytokine release syndrome, the pathogenesis of cytokine storm has not been clearly elucidated yet. Furthermore, many clinical evidences have indicated the importance of anti-inflammatory immunomodulation therapy in severe COVID-19. Although a number of studies have been conducted on target immunomodulatory therapy for severe COVID-19, no specific recommendations have been made yet. Moreover, there are some evidence against cytokine storm as pivotal pathogenetic mechanism for clinical deterioration in COVID-19 patients.

Conclusion. There are enough evidence supporting cytokine response impairment as one of leading cause of COVID-19 progression to multiorgan failure. However, cytokine response abnormalities couldn’t explain clinical deterioration in some patients, so further studies are needed to find possible alternative pathogenetic mechanisms.

https://doi.org/10.21320/1818-474X-2021-1-57-68
PDF_2021-1_57-68 (Русский)
HTML_2021-1_57-68 (Русский)

References

  1. Cohen S., Bigazzi P.E., Yoshida T. Commentary: Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol. 1974; 12: 150–159. DOI: 10.1016/0008-8749(74)90066-5
  2. Curfs J., Meis J., Hoogkamp-Korstanje A. A Primer on Cytokines: Sources, Receptors, Effects, and Inducers.Clinical Microbiology Reviews. 1997: 742–780. DOI: 10.1128/CMR.10.4.742-780.1997
  3. Dinarello C.A. Historical insights into cytokines. Eur J Immunol. 2007; 37(Suppl. 1): S34–S45. DOI: 10.1002/eji.200737772
  4. Gulati K., Guhathakurta S., Joshi J., et al. Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016; 4(2): 00121. DOI: 10.15406/moji.2016.04.00121
  5. Oppenheim J.J. Cytokines: past, present, and future. Int J Hematol. 2001; 74(1): 3–8. DOI: 10.1007/BF02982543. PMID: 11530802
  6. Billingham M.E. Cytokines as inflammatory mediators. Br Med Bull. 1987; 43(2): 350–370. PMID: 3319033. DOI: 10.1093/oxfordjournals.bmb.a072187
  7. Alan A., Larry B. Cytokines and Inflammation. ImmunoMethods, 1993; 3(1): 3–12. DOI: 10.1006/immu.1993.1034
  8. Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019; 20(23): DOI: 10.3390/ijms20236008
  9. Thijs L.G., Hack C.E. Time course of cytokine levels in sepsis. Intensive Care Med. 1995; 21(Suppl 2): S258–S263. DOI: 10.1007/BF01740764
  10. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39(5): 517–528. DOI: 10.1007/s00281-017-0639-8
  11. Wang H., Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med. 2008; 26(6): 711–715. DOI: 10.1016/j.ajem.2007.10.031
  12. Ferrara J.L., Abhyankar S., Gilliland D.G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993; 25(1 Pt 2): 1216–1217.
  13. Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012; 76(1): 16–32. DOI: 10.1128/MMBR.05015-11
  14. Fajgenbaum D.C., June C.H. Cytokine Storm. N Engl J Med. 2020; 383(23): 255–2273. DOI: 10.1056/NEJMra2026131
  15. Ferrara J.L. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol. 1993; 5(5): 794–799. DOI: 10.1016/0952-7915(93)90139-j
  16. Hussell T., Goulding J. Structured regulation of inflammation during respiratory viral infection. Lancet Infect Dis. 2010; 10(5): 360–366. DOI: 10.1016/S1473-3099(10)70067-0
  17. Teijaro J.R. Cytokine storms in infectious diseases. Semin Immunopathol. 2017; 39(5): 501–503. DOI: 10.1007/s00281-017-0640-2
  18. Barry S.M., Johnson M.A., Janossy G. Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited. Bone Marrow Transplant. 2000; 26(6): 591–597. DOI: 10.1038/sj.bmt.1702562
  19. Srikiatkhachorn A., Mathew A., Rothman A.L. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol. 2017; 39(5): 563–574. DOI: 10.1007/s00281-017-0625-1
  20. Borges A.A., Campos G.M., Moreli M.L., et al. Hantavirus cardiopulmonary syndrome: immune response and pathogenesis. Microbes Infect. 2006; 8(8): 2324–2330. DOI: 10.1016/j.micinf.2006.04.019
  21. La Gruta N.L., Kedzierska K., Stambas J., Doherty P.C. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol. 2007; 85(2): 85–92. DOI: 10.1038/sj.icb.7100026
  22. Liu Q., Zhou Y.-H., Yang Z.-Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016; 13:3–10. DOI: 10.1038/cmi.2015.74
  23. Guo X.J., Thomas P.G. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017; 39(5): 541–550. DOI: 10.1007/s00281-017-0636-y
  24. Huang K.J., Su I.J., Theron M., et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005; 75(2): 185–194. DOI: 10.1002/jmv.20255
  25. Thiel V., Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008; 19(2):121–132. DOI: 10.1016/j.cytogfr.2008.01.001
  26. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39(5): 529–539. DOI: 10.1007/s00281-017-0629-x
  27. Bhattad S. Cytokine Storm Syndrome: What Every Physician Must Know Today? Pediatr Inf Dis. 2020; 2(2): 79–81. DOI: 10.5005/jp-journals-10081-1251
  28. Canna S.W., Cron R.Q. Highways to hell: Mechanism-based management of cytokine storm syndromes. J Allergy Clin Immunol. 2020; 146(5): 949–959. DOI: 10.1016/j.jaci.2020.09.016
  29. Llewelyn M., Cohen J. Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis. 2002; 2(3): 156–162. DOI: 10.1016/s1473-3099(02)00222-0
  30. Papageorgiou A.C., Acharya K.R. Microbial superantigens: from structure to function. Trends Microbiol. 2000; 8(8): 369–375. DOI: 10.1016/s0966-842x(00)01793-5
  31. Jessen B., Kögl T., Sepulveda F.E., et al. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol. 2013; 4: 448. DOI: 10.3389/fimmu.2013.00448
  32. Olejnik J., Hume A.J., Mühlberger E. Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog. 2018; 14(12): e1007390. DOI: 10.1371/journal.ppat.1007390
  33. Bode S., Ammann S., Al-Herz W., et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015; 100(7): 978–988. DOI: 10.3324/haematol.2014.121608
  34. Booth C., Gilmour K.C., Veys P., et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011; 117: 53–62.
  35. Chatenoud L., Bach J.F. Activation lymphocytaire T induite par les anticorps monoclonaux anti-CD3: physiopathologie du relargage de cytokines. C R Seances Soc Biol Fil. 1991; 185(5): 268–277.
  36. Lee D.W., Gardner R., Porter D.L., et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124(2): 188–195. DOI: 10.1182/blood-2014-05-552729
  37. Shimabukuro-Vornhagen A., Gödel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018; 6(1): 56. DOI: 10.1186/s40425-018-0343-9
  38. Xu X.J., Tang Y.M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett. 2014; 343(2):172–178. DOI: 10.1016/j.canlet.2013.10.004
  39. García Roche A., Díaz Lagares C., Élez E., Ferrer Roca R. Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Med Intensiva. 2019; 43(8): 480–488. DOI: 10.1016/j.medin.2019.01.009
  40. Le R.Q., Li L., Yuan W., et al. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist. 2018; 23(8): 943–947. DOI: 10.1634/theoncologist.2018-0028
  41. Farquhar J.W., Claireaux A.E. Familial haemophagocytic reticulosis. Arch Dis Child. 1952; 27(136): 519–525. DOI: 10.1136/adc.27.136.519
  42. Risdall R.J., McKenna R.W., Nesbit M.E., et al. Virus-associated hemophagocytic syndrome: a benign histiocytic proliferation distinct from malignant histiocytosis. Cancer. 1979; 44(3): 993–1002. DOI: 10.1002/1097-0142(197909)44:3<993::aid-cncr2820440329>3.0.co;2-5
  43. Tiab M., Mechinaud F., Harousseau J.L. Haemophagocytic syndrome associated with infections. Baillieres Best Pract Res Clin Haematol. 2000; 13(2): 163–178. DOI: 10.1053/beha.2000.0066
  44. Rouphael N.G., Talati N.J., Vaughan C., et al. Infections associated with haemophagocytic syndrome. Lancet Infect Dis. 2007; 7(12): 814–822. DOI: 10.1016/S1473-3099(07)70290-6
  45. Chen J., Wang X., He P., et al. Viral etiology, clinical and laboratory features of adult hemophagocytic lymphohistiocytosis. J Med Virol. 2016; 88(3): 541–549. DOI: 10.1002/jmv.24359
  46. Fardet L., Galicier L., Lambotte O., et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014; 66(9): 2613–2620. DOI: 10.1002/art.38690
  47. Jordan M.B., Allen C.E., Greenberg J., et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: Recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr Blood Cancer. 2019; 66(11): e27929. DOI: 10.1002/pbc.27929
  48. Ramos-Casals M., Brito-Zerón P., López-Guillermo A., et al. Adult haemophagocytic syndrome. Lancet. 2014; 383(9927): 1503–1516. DOI: 10.1016/S0140-6736(13)61048-X
  49. Canna S.W., Behrens E.M. Making sense of the cytokine storm: a conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr Clin North Am. 2012; 59(2): 329–344. DOI: 10.1016/j.pcl.2012.03.002
  50. La Rosée P., Horne A., Hines M., et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019; 133(23): 2465–2477. DOI: 10.1182/blood.2018894618
  51. Hadchouel M., Prieur A.M., Griscelli C. Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Pediatr. 1985; 106(4): 561–566. DOI: 10.1016/s0022-3476(85)80072-x
  52. Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019; 10: DOI: 10.3389/fimmu.2019.00119
  53. Bracaglia C., Prencipe G., De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017; 15(1): Published 2017 Jan 17. DOI: 10.1186/s12969-016-0130-4
  54. Stuart J. Carter, Rachel S. Tattersall, Athimalaipet V. Ramanan. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment, Rheumatology. 2019; 58(1): 5–17. DOI: 10.1093/rheumatology/key006
  55. Zhao Z., Wei Y., Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol. 2021; 222: DOI: 10.1016/j.clim.2020.108615
  56. Pelaia C., Tinello C., Vatrella A., et al. Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther Adv Respir Dis. 2020; 14: 1753466620933508. DOI: 10.1177/1753466620933508
  57. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020; 20(5): 277. DOI: 10.1038/s41577-020-0305-6
  58. de la Rica R., Borges M., Gonzalez-Freire M. COVID-19: In the Eye of the Cytokine Storm. Front Immunol. 2020; 11: Published 2020 Sep 24. DOI: 10.3389/fimmu.2020.558898
  59. Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta. 2020; 509: 280–287. DOI: 10.1016/j.cca.2020.06.017
  60. Khosroshahi L.M., Rezaei N. Dysregulation of the Immune Response in COVID-19. Cell Biol Int. 2020: 1002/cbin.11517. DOI: 10.1002/cbin.11517
  61. Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020; 53(1): 19–25. DOI: 10.1016/j.immuni.2020.06.017
  62. Potempa L.A., Rajab I.M., Hart P.C., et al. Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections. Am J Trop Med Hyg. 2020; 103(2): 561–563. DOI: 10.4269/ajtmh.20-0473
  63. Yonas E., Alwi I., Pranata R., et al. Elevated interleukin levels are associated with higher severity and mortality in COVID 19 — A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020; 14(6): 2219–2230. DOI: 10.1016/j.dsx.2020.11.011
  64. Lavillegrand J.R., Garnier M., Spaeth A., et al. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: inflammatory response of SARS-CoV-2 patients. Ann. Intensive Care 11, 9 (2021). DOI: 10.1186/s13613-020-00798-x.
  65. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473–474. DOI: 10.1126/science.abb8925
  66. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6): DOI: 10.1016/j.autrev.2020.102537
  67. Langer-Gould A., Smith J.B., Gonzales E.G., et al. Early identification of COVID-19 cytokine storm and treatment with anakinra or tocilizumab. Int J Infect Dis. 2020; 99: 291–297. DOI: 10.1016/j.ijid.2020.07.081
  68. Bhaskar S., Sinha A., Banach M., et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648. Published 2020 Jul 10. DOI: 10.3389/fimmu.2020.01648
  69. Caricchio R., Gallucci M., Dass C., et al. Preliminary predictive criteria for COVID-19 cytokine storm. Annals of the Rheumatic Diseases. 2021; 80(1): 88–95. DOI: 10.1136/annrheumdis-2020-218323
  70. Retamozo S., Brito-Zerón P., Sisó-Almirall A., et al. Haemophagocytic syndrome and COVID-19. Clin Rheumatol. 2021. DOI: 10.1007/s10067-020-05569-4
  71. Morris S.B., Schwartz N.G., Patel P., et al. Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection — United Kingdom and United States, March-August 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(40): 1450–1456. DOI: 10.15585/mmwr.mm6940e1
  72. Leisman D.E., Ronner L., Pinotti R., et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, metaanalysis, and comparison with other inflammatory syndromes. Lancet Respir Med. S2213–2600: 30404–30405. DOI: 10.1016/S2213-2600(20)30404-5
  73. Liu D., Zhang T., Wang Y., Xia L. Tocilizumab: The Key to Stop Coronavirus Disease 2019 (COVID-19)-Induced Cytokine Release Syndrome (CRS)? Front Med (Lausanne). 2020; 7: Published 2020 Oct 26. DOI: 10.3389/fmed.2020.571597
  74. Miao Y., Fan L., Li J.Y. Potential Treatments for COVID-19 Related Cytokine Storm — Beyond Corticosteroids. Front Immunol. 2020 Jun 16;11:1445. DOI: 10.3389/fimmu.2020.01445.
  75. Cavalli G., Farina N., Campochiaro C., et al. Repurposing of Biologic and Targeted Synthetic Anti-Rheumatic Drugs in COVID-19 and Hyper-Inflammation: A Comprehensive Review of Available and Emerging Evidence at the Peak of the Pandemic. Front Pharmacol. 2020; 11: 598308. Published 2020 Dec 18. DOI: 10.3389/fphar.2020.598308
  76. D’Elia R.V., Harrison K., Oyston P.C., et al. Targeting the “Cytokine Storm” for Therapeutic Benefit. Clinical and Vaccine Immunology. 2013; 20(3): 319–327; DOI: 10.1128/CVI.00636-12
  77. Wong J.P., Viswanathan S., Wang M., et al. Current and future developments in the treatment of virus-induced hypercytokinemia. Future Med Chem. 2017; 9(2): 169–178. DOI: 10.4155/fmc-2016-0181
  78. Xu X., Han M., Li T., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences. 2020; 117(20): 10970–10975. DOI: 10.1073/pnas.2005615117
  79. Narazaki M., Kishimoto T. The Two-Faced Cytokine IL-6 in Host Defense and Diseases. Int J Mol Sci. 2018; 19(11): DOI: 10.3390/ijms19113528
  80. Ritchie A.I., Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. 2020; 395(10230): DOI: 10.1016/S0140-6736(20)30691-7
  81. Lang V.R., Englbrecht M., Rech J., et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology (Oxford). 2012;51 (5): 852–857. DOI: 10.1093/rheumatology/ker223
  82. Halyabar O., Chang M.H., Schoettler M.L., et al. Calm in the midst of cytokine storm: a collaborative approach to the diagnosis and treatment of hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Pediatr Rheumatol Online J. 2019; 17(1): 7. DOI: 10.1186/s12969-019-0309-6
  83. Kim J.S., Lee J.Y., Yang J.W., et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021; 11(1): 316–329. DOI: 10.7150/thno.49713
  84. Han Q., Guo M., Zheng Y., et al. Current Evidence of Interleukin-6 Signaling Inhibitors in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020; 11: 615972. DOI: 10.3389/fphar.2020.615972
  85. Schoot T.S., Kerckhoffs A.P.M., Hilbrands L.B., et al. Immunosuppressive Drugs and COVID-19: A Review. Front Pharmacol. 2020; 11: 1333. DOI: 10.3389/fphar.2020.01333
  86. Tleyjeh I.M., Kashour Z., Damlaj M., et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis [published online ahead of print, 2020 Nov 5]. Clin Microbiol Infect. 2020; 27(2): 215–227. DOI: 10.1016/j.cmi.2020.10.036
  87. Richier Q., Plaçais L., Lacombe K., Hermine O. COVID-19: encore une place pour le tocilizumab? Rev Med Interne. 2021; 42(2):73–78. DOI: 10.1016/j.revmed.2020.11.016
  88. Nasonov E., Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020; 131: DOI: 10.1016/j.biopha.2020.110698
  89. Rosas I., Bräu N., Waters M., et al. Tocilizumab in Hospitalized Patients With COVID-19 Pneumonia. medRxiv. 2020.08.27.20183442. DOI: 10.1101/2020.08.27.20183442
  90. Hermine O., Mariette X., Tharaux P.L., et al. CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021; 181(1): 32–40. DOI: 10.1001/jamainternmed.2020.6820
  91. Stone J.H., Frigault M.J., Serling-Boyd N.J., et al. BACC Bay Tocilizumab Trial Investigators. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med. 2020; 383(24): 2333–2344. DOI: 10.1056/NEJMoa2028836
  92. Salvarani C., Dolci G., Massari M., et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021; 181(1): 24–31. DOI: 10.1001/jamainternmed.2020.6615
  93. Veiga V.C., Prats J., Farias D., et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ. 2021; 372: n84. DOI: 10.1136/bmj.n84
  94. Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001; 65(1): 131–150. DOI:1128/MMBR.65.1.131-150.2001
  95. Kimura H., Yoshizumi M., Ishii H., et al. Cytokine production and signaling pathways in respiratory virus infection. Front Microbiol. 2013; 4: 276. DOI: 10.3389/fmicb.2013.00276
  96. Schwarze J., Mackenzie K.J. Novel insights into immune and inflammatory responses to respiratory viruses. Thorax. 2013; 68(1): 108–110. DOI:1136/thoraxjnl-2012-202291
  97. Bhattacharyya S. Inflammation During Virus Infection: Swings and Roundabouts. Dynamics of Immune Activation in Viral Diseases. 2019; 43–59. DOI:1007/978-981-15-1045-8_3
  98. Sinha P., Matthay M.A., Calfee C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern Med. 2020; 180(9): 1152–1154. DOI:1001/jamainternmed.2020.3313.
  99. Mudd P.A., Crawford J.C., Turner J.S., et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci Adv. 2020; 6(50): eabe3024. DOI: 10.1126/sciadv.abe3024
  100. Nigrovic P.A. COVID-19 cytokine storm: what is in a name? Ann Rheum Dis 2021; 80: 3–5. DOI: 10.1136/annrheumdis-2020-219448
  101. Brikman S., Bieber A., Dori G. The Hyper-Inflammatory Response in Adults with Severe COVID-19 Pneumonia Differs from the Cytokine Storm of Hemophagocytic Syndrome. Isr Med Assoc J. 2020; 22(8): 505–513.
  102. Lorenz G., Moog P., Bachmann Q., et al. Cytokine release syndrome is not usually caused by secondary hemophagocytic lymphohistiocytosis in a cohort of 19 critically ill COVID-19 patients. Sci Rep. 2020; 10(1): 18277. DOI: 10.1038/s41598-020-75260-w
  103. Gao Y., Wang C., Kang K., et al. Cytokine Storm May Not Be the Chief Culprit for the Deterioration of COVID-19. Viral Immunol. 2020, Nov 17. DOI: 10.1089/vim.2020.0243
  104. Blot M., Bourredjem A., Binquet C., Piroth L. LYMPHONIE Study Group. Is IL-6 the Right Target in COVID-19 Severe Pneumonia? Am J Respir Crit Care Med. 2021; 203(1): 139–140. DOI: 10.1164/rccm.202007-2924LE
  105. Kox M., Waalders N.J.B., Kooistra E.J., et al. Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions. JAMA. 2020; 324(15): 1565–1567. DOI: 10.1001/jama.2020.17052
  106. Remy K.E., Mazer M., Striker D.A., et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020; 5(17): e140329. DOI: 10.1172/jci.insight.140329
  107. Riva G., Nasillo V., Tagliafico E., et al. COVID-19: more than a cytokine storm. Critical Care. 2020; 24: 549. DOI: 10.1186/s13054-020-03267-w
  108. Kiselevskiy M., Shubina I., Chikileva I., et al. Immune Pathogenesis of COVID-19 Intoxication: Storm or Silence? Pharmaceuticals (Basel). 2020; 13(8):166. DOI: 10.3390/ph13080166
  109. Descartes R. Regles pour la direction de l’esprit. Edité par: Vrin, 1988.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 ANNALS OF CRITICAL CARE