Dynamics of organ dysfunction and inflammation markers in patients with septic shock during multimodal hemocorrection: a multicenter, randomized, controlled study
PDF_2023-4_60-71 (Русский)

Keywords

sepsis
septic shock
multiple organ failure
blood purification
lipopolysaccharides
Cytokine adsorption

How to Cite

Rey S.I., Kulabukhov V.V., Popov A.Y., Nikitina O.V., Berdnikov G.A., Kim T.G., Masolitin S.V., Magomedov M.A., Ignatenko O.V., Krotenko N.P., Marysheva A.N., Chaus N.I., Okhinko L.V., Mendibaev M.S., Chumachenko A.G., Grechko A.V., Pisarev V.M. Dynamics of organ dysfunction and inflammation markers in patients with septic shock during multimodal hemocorrection: a multicenter, randomized, controlled study. Annals of Critical Care. 2023;(4):60–71. doi:10.21320/1818-474X-2023-4-60-71.

Statistic

Abstract Views: 440
PDF_2023-4_60-71 (Русский) Downloads: 68
Statistic from 21.01.2023

Abstract

INTRODUCTION: Septic shock is the most serious complication in intensive care that associates with significant mortality. Extracorporeal hemocorrection may improve treatment of patients with septic shock. OBJECTIVE: Evaluation of the effect of hemocorrection with the multimodal adsorbent device Efferon LPS on the dynamics of organ dysfunction and inflammation markers in patients with septic shock. MATERIALS AND METHODS: A multicenter randomized controlled study was conducted in four clinical organizations in the city of Moscow from March 2021 to May 2022. The study included 58 patients (29 men and 29 women) with septic shock. Randomization was performed in a ratio of 2:1 (hemoperfusion: control). Within 24 hours of enrollment in the study, selective hemoperfusion procedures were performed or standard therapy was used. Hemosorption using Efferon LPS was performed twice, with an interval of 24.5 (23.3–26.0) hours. RESULTS: The use of the multimodal selective hemosorbent Efferon LPS significantly reduced the severity of multiple organ failure (MOF) in patients with septic shock from 7 to 3 points on the SOFA scale after 72 hours by improving hemodynamics, respiratory and renal function. In contrast to the control group, in the Efferon LPS group, the levels of CRP, PCT and IL-6 significantly decreased in 72 hours. The severity of MOF significantly correlated with the level of CRP and PCT (Spearman’s r = 0.346 and r = 0.444, respectively). The duration of hospitalization in survived patients was 16.1 days and 30.1 days in the Efferon LPS and control group, respectively (p = 0.032). The need for a renal replacement therapy (RRT) in survivors by the 3rd day was significantly reduced only in the Efferon LPS group — from 73.7 to 33.3 %. CONCLUSIONS: The use of the selective hemosorbent Efferon LPS resulted in significant decreases the hallmarks of systemic inflammation, MOF and requirements for RRT in patients with septic shock.

https://doi.org/10.21320/1818-474X-2023-4-60-71
PDF_2023-4_60-71 (Русский)

Full-text of the article is available for this locale: Русский.

References

  1. Rudd K.E., Johnson S.C., Agesa K.M., et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020; 395: 200–11. DOI: 10.1016/S0140-6736(19)32989-7
  2. Singer M., Deutschman C.S., Seymour C.W., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 801–10. DOI: 10.1001/jama.2016.0287
  3. Vincent J.-L., Jones G., David S., et al. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Crit Care. 2019; 23(1): 196. DOI: 10.1186/s13054-019-2478-6
  4. Liu Y.C., Yao Y., Yu M.M., et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. BMC Infect Dis. 2022; 22(1): 564. DOI: 10.1186/s12879-022-07543-8
  5. Bauer M., Gerlach H., Vogelmann T., et al. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019-results from a systematic review and meta-analysis. Crit Care. 2020; 24(1): 239. DOI: 10.1186/s13054-020-02950-2
  6. Jarczak D., Kluge S., Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med (Lausanne). 2021; 8: 628302. DOI: 10.3389/fmed.2021.628302
  7. Sygitowicz G., Sitkiewicza D. Molecular mechanisms of organ damage in sepsis: an overview. Braz J Infect Dis. 2020; 24(6): 552–60. DOI: 10.1016/j.bjid.2020.09.004
  8. Ким Т.Г., Проценко Д.Н., Магомедов М.А. и др. Динамика уровня активности эндотоксина и концентрации цитокинов в крови у пациентов с септическим шоком и острым повреждением почек при применении различных методов экстракорпоральной детоксикации. Анестезиология и реаниматология. 2022; 5 : 36–45. DOI:10.17116/anaesthesiology202205136 [Kim T.G., Protsenko D.N., Magomedov M.A., et al. Dynamics of endotoxin activity and cytokine concentration in patients with septic shock and acute kidney injury undergoing various methods of extracorporeal detoxification. Russian Journal of Anesthesiology and Reanimatology. 2022; 5: 36–45. DOI:10.17116/anaesthesiology202205136 (In Russ)]
  9. Font M.D., Thyagarajan B., Khanna A.K. Sepsis and Septic Shock-Basics of diagnosis, pathophysiology and clinical decision making. Med Clin North Am. 2020; 104(4): 573–85. DOI: 10.1016/j.mcna.2020.02.011
  10. Evans L., Rhodes A., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11): 1181–247. DOI: 10.1007/s00134-021-06506-y
  11. Śmiechowicz J. The Rationale and Current Status of Endotoxin Adsorption in the Treatment of Septic Shock. J Clin Med. 2022; 11(3): 619. DOI: 10.3390/jcm11030619
  12. Ruiz-Rodriguez J.C., Plata-Menchaca E.P., Chiscano-Camón L., et al. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J Crit Care Med. 2022; 11(1): 1–21. DOI: 10.5492/wjccm.v11.i1.1
  13. Ратников В.А., Щеглов А.Н., Абрамовский С.В. и др. Предикторы клинической эффективности гемосорбции цитокинов при COVID-19. Общая реаниматология. 2023;19(1):20–6. DOI: 10.15360/1813-9779-2023-1-2224 [Ratnikov V.A., Sheglov A.N., Abramovskiy S.V., et al. Predictors of Clinical Efficacy of Cytokine Hemoadsorption in COVID-19 (Clinical Trial). Obshaya Reanimatologiya (General Reanimatology). 2023; 19(1): 20–6. DOI: 10.15360/1813-9779-2023-1-2224 (In Russ)]
  14. Ronco C., Bellomo R. Hemoperfusion: technical aspects and state of the art. Crit Care. 2022; 26(1): 135. DOI: 10.1186/s13054-022-04009-w
  15. Морозов А.С., Бессонов И.В., Нуждина А.В., Писарев В.М. Сорбенты для экстракорпорального удаления токсических веществ и молекул с нежелательной биологической активностью. Общая реаниматология. 2016; 12(6): 82–107. DOI: 10.15360/1813-9779-2016-6-82-107 [Morozov A.S., Bessonov I.V., Nuzhdina A.V., Pisarev V.M. Sorbents for extracorporeal removal of toxic substances and molecules with adverse biological activity (review). Obshaya Reanimatologiya (General Reanimatology). 2016; 12(6): 82–107. DOI: 10.15360/1813-9779-2016-6-82-107 (In Russ)]
  16. Магомедов М.А., Ким Т.Г., Масолитин С.В. и др. Использование сорбента на основе сверхсшитого стирол-дивинилбензольного сополимера с иммобилизованным ЛПС-селективным лигандом при гемоперфузии для лечения пациентов с септическим шоком. Общая реаниматология. 2020; 16(6): 31–53. DOI: 10.15360/1813-9779-2020-6-31-53 [Magomedov M.A., Kim T.G., Masolitin S.V., et al. Use of Sorbent Based on Hypercrosslinked Styrene-Divinylbenzene Copolymer with Immobilized LPS-Selective Ligand In Hemoperfusion For Treatment of Patients with Septic Shock. Obshaya Reanimatologiya (General Reanimatology). 2020; 16(6): 31–53. DOI: 10.15360/1813-9779-2020-6-31-53 (In Russ)]
  17. Ушакова Н.Д., Тихонова С.Н., Розенко Д.А. Гемосорбция с использованием колонки на основе сверхсшитого стирол-дивинибензольного сополимера с иммобилизированным ЛПС-селективным лигандом в комплексе интенсивного лечения острого повреждения легких при хирургическом лечении рака легкого (клиническое наблюдение). Общая реаниматология. 2020; 16(4): 14–20. DOI: 10.15360/1813-9779-2020-4-14-20 [Ushakova N.D., Tikhonova S.N., Rozenko D.A. Hemosorption by a Column Adsorber Based on Hyper-Cross-Linked Styrene-Divinylbenzene Copolymer with Immobilized Lipopolysaccharide-Selective Ligand in Combined Intensive Care of Lung Cancer-Related Postoperative Acute Lung Injury (Case Report). Obshchaya Reanimatologiya (General Reanimatology). 2020; 16(4): 14–20. DOI: 10.15360/1813-9779-2020-4-14-20 (In Russ)]
  18. Seymour C.W., Liu V.X., Iwashyna T.J., et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 762–74. DOI: 10.1001/jama.2016.0288
  19. Руднов В.А., Кулабухов В.В. Сепсис-3: обновленные ключевые положения, потенциальные проблемы и дальнейшие практические шаги. Вестник анестезиологии и реаниматологии. 2016; 13(4): 4–11. DOI: 10.21292/2078-5658-2016-13-4-4-11 [Rudnov V.A., Kulabukhov V.V. Sepsis-3: Updated Key Messages, Potential Issues and Next Practical Steps. Vestnik anesteziologii i reanimatologii. 2016; 13(4): 4–11. DOI: 10.21292/2078-5658-2016-13-4-4-11 (In Russ)]
  20. Rhodes A., Evans L.E., Alhazzani W., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43(3): 304–77. DOI: 10.1007/s00134-017-4683-6
  21. Cruz D.N., Antonelli M., Fumagalli R., et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009; 301(23): 2445–52. DOI: 10.1001/jama.2009.856
  22. Payen D.M., Guilhot J., Launey Y., et al.; ABDOMIX Group. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015; 41(6): 975–84. DOI: 10.1007/s00134-015-3751-z
  23. Coudroy R., Payen D., Launey Y., et al.; ABDOMIX group. Modulation by Polymyxin-B Hemoperfusion of Inflammatory Response Related to Severe Peritonitis. Shock. 2017; 47(1): 93–9. DOI: 10.1097/SHK.0000000000000725
  24. Dellinger R.P., Bagshaw S.M., Antonelli M., et al.; EUPHRATES Trial Investigators. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients with Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018; 320(14): 1455–63. DOI: 10.1001/jama.2018.14618
  25. Fujimori К., Tarasawa К., Fushimi К. Effectiveness of polymyxin B hemoperfusion for sepsis depends on the baseline SOFA score: a nationwide observational study. Ann Intensive Care. 2021; 11(1): 141. DOI: 10.1186/s13613-021-00928-z
  26. Cutuli S.L., Artigas A., Fumagalli R., et al.; The EUPHAS 2 Collaborative Group. Polymyxin-B hemoperfusion in septic patients: analysis of a multicenter registry. Ann Intensive Care. 2016; 6(1): 77. DOI: 10.1186/s13613-016-0178-9
  27. Yamashita С., Moriyama К., Hasegawa D., et al. In Vitro Study of Endotoxin Adsorption by a Polymyxin B-Immobilized Fiber Column. Blood Purif. 2018; 46(4): 269–73. DOI: 10.1159/000489920
  28. Ono S., Kimura A., Hiraki S., et al. Removal of increased circulating CD4+CD25+Foxp3+ regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery. 2013; 153(2): 262–71. DOI: 10.1016/j.surg.2012.06.023
  29. Putzu A., Schorer R., Lopez-Delgado J.C., et al. Blood Purification and Mortality in Sepsis and Septic Shock a Systematic Review and Metaanalysis of Randomized Trials. Anesthesiology. 2019; 131(3): 580–93. DOI: 10.1097/ALN.0000000000002820
  30. Snow T.A.C., Littlewood S., Corredor C., et al. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purif. 2021; 50(4–5): 462–72. DOI: 10.1159/000510982
  31. Ronco С., Chawla L., Husain‑Syed F., et al. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit Care. 2023; 27(1): 50. DOI: 10.1186/s13054-023-04310
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Annals of Critical Care